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ABSTRACT
BACKGROUND: Microdeletions of the MEF2C gene are linked to a syndromic form of autism termed MEF2C hap-
loinsufficiency syndrome (MCHS). MEF2C hypofunction in neurons is presumed to underlie most of the symptoms of
MCHS. However, it is unclear in which cell populations MEF2C functions to regulate neurotypical development.
METHODS: Multiple biochemical, molecular, electrophysiological, behavioral, and transgenic mouse approaches
were used to characterize MCHS-relevant synaptic, behavioral, and gene expression changes in mouse models of
MCHS.
RESULTS:We showed that MCHS-associated missense mutations cluster in the conserved DNA binding domain and
disrupt MEF2C DNA binding. DNA binding–deficient global Mef2c heterozygous mice (Mef2c-Het) displayed
numerous MCHS-related behaviors, including autism-related behaviors, changes in cortical gene expression, and
deficits in cortical excitatory synaptic transmission. We detected hundreds of dysregulated genes in Mef2c-Het
cortex, including significant enrichments of autism risk and excitatory neuron genes. In addition, we observed an
enrichment of upregulated microglial genes, but this was not due to neuroinflammation in the Mef2c-Het cortex.
Importantly, conditional Mef2c heterozygosity in forebrain excitatory neurons reproduced a subset of the Mef2c-
Het phenotypes, while conditional Mef2c heterozygosity in microglia reproduced social deficits and repetitive
behavior.
CONCLUSIONS: Taken together, our findings show that mutations found in individuals with MCHS disrupt the DNA-
binding function of MEF2C, and DNA binding–deficient Mef2c global heterozygous mice display numerous MCHS-
related phenotypes, including excitatory neuron and microglia gene expression changes. Our findings suggest that
MEF2C regulates typical brain development and function through multiple cell types, including excitatory neuronal
and neuroimmune populations.
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MEF2 (myocyte enhancer factor 2) proteins are members of
the MADS family of transcription factors that regulate gene
expression during development and adulthood. In the brain,
MEF2C is important for neuronal differentiation and syn-
apse development (1). MEF2 proteins regulate numerous
genes associated with synapse formation and function as
well as multiple genes linked to neurodevelopmental dis-
orders, including autism spectrum disorder (ASD) (2–4).
Constitutively active MEF2C can promote glutamatergic
synapse elimination, a process requiring the RNA-binding
function of FMRP (fragile X mental retardation protein)
(5–8). Conditional knockout (cKO) of Mef2c in neuronal
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populations within the mouse brain produces myriad severe
behavioral and synaptic phenotypes, which emphasizes the
importance of this gene in healthy brain development
(2,9–12).

MEF2C in the developing and mature brain is also
expressed in microglia (13–15)—a population of
macrophage-like cells throughout the brain that regulates
synapse formation and pruning during early brain develop-
ment (16–18). Microglia influence a number of brain func-
tions, including synapse elimination, synapse formation,
fasciculation of the corpus callosum, survival of oligoden-
drocyte precursor cells, and phagocytosis of other brain
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cells (16,19–24). Microglia are recognized not only as
responding to infection or injury, but also as important reg-
ulators of brain development and function (25). In addition,
microglial dysfunction might play an important role in dis-
ease pathology for other neurodevelopmental disorders,
including Rett syndrome (26–29).

Microdeletions on chromosome 5q14.3 that include the
MEF2C gene or point mutations within the protein-coding
region of MEF2C are linked to a recently described neuro-
developmental disorder, termed MEF2C haploinsufficiency
syndrome (MCHS) (30–40). Common symptoms of MCHS
include ASD, absence of speech, stereotypical behaviors,
hyperactivity, intellectual disability, hypotonia and motor
abnormalities, high pain tolerance, sleep disturbances, and
epilepsy. Individuals with MEF2C point mutations typically
present with fewer and/or milder symptoms (30–40). Owing
to the abundance of neurological symptoms and neuronal-
enriched expression of MEF2C, MEF2C haploinsufficiency
within neurons is presumed to underlie most, if not all,
MCHS symptoms. Interestingly, single-cell genomic profiling
from cortical tissue of patients with idiopathic autism
revealed that upper-layer excitatory neurons and microglia
are preferentially affected in autism (41), and as both neu-
rons and microglia express MEF2C, we sought to explore
the possible cell type–specific effects of MEF2C hypo-
function in MCHS-related behaviors in a construct-valid
mouse model of human MCHS.
METHODS AND MATERIALS

Patients

Patients with developmental delay and a significant variant in
the MEF2C gene were selected for this study. These patients
were seen for clinical genetics evaluations at the Greenwood
Genetic Center (Greenwood, SC), and data from these visits
were gathered from records review. Internal informed con-
sent to review and publish the data was obtained for each
subject.
Animals

Mef2c1/2 (Mef2c-Het) mice were generated by crossing
Mef2c-flox mice (RRID:MGI:3719006) to Prm-Cre mice (The
Jackson Laboratory, Bar Harbor, ME). The Prm-Cre allele was
subsequently removed during repeated backcrossing to
C57BL/6J wild-type mice. Mef2c conditional heterozygous
(Mef2c-cHet) mice were generated by crossing Mef2c-flox
mice with cell type–selective Cre-expressing transgenic mice
[Emx1-Cre (42), PV-Cre, Pcp2-Cre, or Cx3Cr1creER/creER (20) (all
from The Jackson Laboratory)] to generate Mef2cfl/1; Cre1

Mef2c-cHet mice that were compared with their Cre-negative
or flox-negative littermates (control mice). Experimenters
were blinded to the mouse genotype during data acquisition
and analysis. All procedures were conducted in accordance
with the Medical University of South Carolina Institutional An-
imal Care and Use Committee and National Institutes of Health
guidelines.

Detailed Methods are in Supplement 1.
Biological Psychi
RESULTS

Patient MEF2C Missense Mutations Cluster in DNA
Binding and Dimerization Domains and Disrupt DNA
Binding

Deletions or mutations in MEF2C are assumed to create loss-
of-function alleles that cause the symptoms of MCHS (30–40).
Given that microdeletions of 5q14.3 often include additional
genes beyond MEF2C, we identified individuals with mutations
within the MEF2C protein-coding region, including an intra-
genic duplication (i.e., p.D40_C41dup) and two missense var-
iants (i.e., p.K30N and p.I46T) (Table S1 in Supplement 1). We
compared their clinical histories with those associated with
two previously reported missense variants in the MEF2C gene
(31). All 5 patients presented with global developmental delay
and seizures. Common features of these individuals included
absence of speech, repetitive movements, hypotonia, varied
but inconsistent abnormalities on brain magnetic resonance
imaging, and breathing disturbances. High pain tolerance was
noted in two of the patients. There were some minor facial
dysmorphisms noted, though there did not seem to be a
consistently recognizable gestalt. When a list of additional
MCHS mutations was assembled (C.W.C. and S.A.S., personal
communications, October 2019), several frameshift and pre-
mature stop codon mutations were identified, all of which, if
stable, are predicted to produce a truncated MEF2C protein
lacking its C-terminal nuclear localization sequence. We noted
that all of theMEF2Cmissense (or small duplication) mutations
were clustered within the highly conserved MADS (DNA
binding) or MEF2 (dimerization) domains (Figure 1A). In an
MEF2 response element DNA binding assay, all 5 of the MADS
domain patient mutations caused a loss of MEF2C DNA
binding (Figure 1B, C and Figure S1A in Supplement 1), and
they did not appear to interfere with wild-type MEF2C DNA
binding (Figure S1B in Supplement 1), suggesting a loss-of-
function phenotype.

Mef2c Heterozygous Mouse Model

To model the genetics of MCHS in mice, we generated a
global heterozygous Mef2c mutant mouse lacking exon 2
(Mef2c1/DEx2 or Mef2c-Het) (Figure 1D), which encodes a large
portion of the MADS/MEF2 domains. The near full-length
MEF2CDEx2 protein had no detectable DNA binding affinity
and did not reduce DNA binding affinity of wild-type MEF2C
(Figure 1E, F and Figure S1C in Supplement 1). We observed a
non-Mendelian frequency of Mef2c-Het mice, suggesting a
partial embryonic lethality (Figure S1D in Supplement 1), similar
to a previous report (43). To assess for gross morphological
changes in Mef2c-Het brains, we measured the cortical
thickness of the barrel cortex. We did not observe differences
in cortical thickness of the barrel cortex between Mef2c-Het
and control mice (Figure S1E in Supplement 1).

We examined whether male and female Mef2c-Het mice
showed behavior phenotypes reminiscent of MCHS symp-
toms. Using a 3-chamber social interaction test, we observed
that Mef2c-Het mice had a lack of social preference with a
novel same-sex mouse (Figure 2A). We also found that
Mef2c-Het male and female pups (postnatal day 7–10) pro-
duced significantly fewer ultrasonic vocalization calls during
atry September 15, 2020; 88:488–499 www.sobp.org/journal 489
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Figure 1. MCHS-associated mutations in MEF2C disrupt DNA binding. (A) Schematic of the MEF2C protein with locations of MCHS mutations. MCHS
mutations in green are further characterized (B, C). MCHS mutations that are newly described in this article are denoted with a single asterisk. MCHS mutations
not previously reported (C.W.C. and S.A.S., personal communications, October 2019) are denoted by 2 asterisks. The alternatively spliced beta (green) and
gamma (blue) domains are shown. All MEF2C transcripts contain a C-terminal NLS that is predicted to be absent in all of the indicated frameshift (fs) mutations.
(B) Western blot of MEF2C WT and MCHS mutations in 293-T cells show that all MCHS mutations lead to protein expression. Arrows denote MEF2C WT and
mutant protein bands. (C) Electrophoretic mobility shift assay using fluorescently labeled MRE probe and MEF2C protein lysates from 293-T cells containing
MEF2C mutations. MEF2C bound probe is shifted in the gel (denoted by plus sign). Unbound fluorescent probe is denoted with a minus sign. Only MEF2C WT
binds to the fluorescently labeled MRE, while MCHS mutant proteins fail to bind the MRE probe (C). Quantification of bound probe is included (C). (D) Western
blot of MEF2C from cortical lysates of control and Mef2c1/2 mice. The black arrow denotes MEF2C WT, and the red arrow denotes MEF2C DelEx2 (D, E). (E)
Western blot of MEF2C WT and MEF2C DelEx2 from 293-T cells. (F)MEF2C DelEx2 fails to bind the MRE probe and does not interfere with MEF2C WT binding
to MRE probes. 1, bound probe; 2, unbound probe. Data are reported as mean 6 SEM. Also see Figure S1 in Supplement 1. GFP, green fluorescent protein;
MCHS, MEF2C haploinsufficiency syndrome; MRE, MEF2 response element; NLS, nuclear localization sequence; WT, wild-type.

MEF2C Hypofunction Produces MCHS-like Behaviors
Biological
Psychiatry
maternal separation (Figure 2B), and young adult Mef2c-Het
male mice produced significantly fewer ultrasonic vocaliza-
tion calls (Figure 2C) in the presence of a female in estrus,
suggesting that Mef2c-Het mice have deficits in a putative
species-appropriate form of social communication. Male
490 Biological Psychiatry September 15, 2020; 88:488–499 www.sobp
Mef2c-Het mice were hyperactive in a novel environment
(Figure 2E) and displayed an increase in jumping (Figure 2F), a
repetitive-type motor behavior; however, young adult Mef2c-
Het mice displayed normal performance on the accelerating
rotarod test of motor coordination (Figure 2D). In addition,
.org/journal
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Figure 2. Mef2c1/2 (Mef2c-Het) mice display
multiple MEF2C haploinsufficiency syndrome–
relevant behaviors. (A) Three-chamber social inter-
action test. Control mice spent significantly more
time interacting with a novel animal over a novel
object, while Mef2c-Het mice showed no preference
for the novel object or the novel animal. (B) Mef2c-
Het pups emitted fewer USVs during maternal sep-
aration in early postnatal development. (C) Adult
male Mef2c-Het mice produced fewer USVs than
control mice in the presence of a female mouse in
estrus. (D) Control and Mef2c-Het mice had similar
latencies to fall on an accelerating rotarod. (E, F)
Male Mef2c-Het mice were hyperactive (E) and
showed increased jump counts (F). (G) Mef2c-Het
mice spent significantly more time on the open arms
of the elevated plus maze. (H) Mef2c-Het mice had
reduced response to shock. (I) Both control and
Mef2c-Het mice increased the number of active port
entries (solid line) during sucrose self-administration.
Dashed line represents inactive port entries. (J) Both
control and Mef2c-Het mice showed similar active
port entries during cue-induced reinstatement of
sucrose seeking. Data are reported as mean 6 SEM.
Statistical significance was determined by 2-way
analysis of variance (A, B, H, I) or unpaired t test
(C–G, J). Number of animals are reported in each
graph. *p , .05, **p , .01, ***p , .005. n.s., not
significant; P7, postnatal day 7; P10, postnatal day
10; USV, ultrasonic vocalizations. Also see Figure S2
in Supplement 1.
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Mef2c-Het mice showed increased exploration of the open,
unprotected arm of the elevated plus maze (Figure 2G).
Interestingly, Mef2c-Het mice showed a reduction in startle
response to electrical foot-shocks (Figure 2H). This pheno-
type might reflect reduced pain sensitivity, similar to subjects
with MCHS (31,33), as startle responses to multiple white-
noise intensities were indistinguishable from control mice
(Figure S2A in Supplement 1).

Despite a common occurrence of intellectual disability in
MCHS, we failed to detect any clear learning and memory-
related deficits in Pavlovian fear conditioning tests
(Figures S2B–D in Supplement 1), the Barnes maze test for
spatial learning and memory (Figure S2E in Supplement 1),
and the Y-maze test for spatial working memory (Figure S2F
in Supplement 1) in the Mef2c-Het mice. These mice also
showed a strong preference for the novel object in the novel
object recognition test (Figure S2G in Supplement 1) and
normal sucrose preference in a two-bottle choice test
(Figure S2H in Supplement 1). In the cognitively demanding
operant sucrose self-administration assay, the Mef2c-Het
mice displayed wild-type levels of operant learning, operant
discrimination (active vs. inactive port), context-related su-
crose seeking after abstinence, extinction learning, and cue-
induced reinstatement (Figure 2I, J and Figure S2I–L in
Supplement 1). Taken together, our findings suggest that in
contrast to the cKO of Mef2c in Emx1-lineage cells (2) or a
related study (43), the global loss of one functional copy of
Mef2c in mice is not sufficient to produce detectable deficits
in learning and memory in the C57BL6/J genetic background.
Biological Psychi
Mef2c-Het Mice Display Input-Selective Reductions
in Cortical Excitatory Synaptic Transmission

In young Mef2c-Het mice (postnatal day 35–40), gross struc-
tural organization of barrel fields within cortical layer 4 of the
somatosensory cortex appeared normal (Figure 3A), and in
somatosensory cortex layer 2/3 pyramidal neurons, we
detected no significant differences by genotype for intrinsic
excitability (Figure S3A in Supplement 1), apical or basal
dendritic spine density, dendritic spine head diameter
(Figure S3B in Supplement 1), or GABA-mediated inhibitory
synaptic transmission (miniature inhibitory postsynaptic cur-
rents) (Figure 3B). However, patch-clamp recordings of layer
2/3 neurons revealed an input-selective deficit in glutamatergic
synaptic transmission. Electrical stimulation of horizontal fibers
in layer 2/3 of a neighboring cortical column produced a sig-
nificant reduction in the amplitude of evoked excitatory post-
synaptic currents (eEPSCs) (Figure 3C), suggesting a reduction
in presynaptic and/or postsynaptic transmission. Paired-pulse
facilitation analysis (50-ms interstimulus interval) of local hori-
zontal inputs revealed a significant increase in paired-pulse
facilitation ratio (Figure 3C), indicating a decrease in presyn-
aptic release probability (44). These effects were input-
selective given that electrical stimulation of layer 4 (within the
same cortical column) produced eEPSC and paired-pulse
facilitation responses in layer 2/3 neurons that were indistin-
guishable from control mice (Figure 3D). To examine if re-
ductions in AMPA-mediated postsynaptic strength might also
contribute to the reduced horizontal eEPSCs (Figure 3C), we
measured miniature EPSCs (mEPSCs) under conditions in
atry September 15, 2020; 88:488–499 www.sobp.org/journal 491
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which action potentials are blocked pharmacologically. In layer
2/3 cells from Mef2c-Het mice, we observed a significant
reduction in mEPSCs amplitude (Figure 3E), suggesting an
overall reduction in AMPA-mediated postsynaptic strength.
Similar to layer 2/3, we also observed a significant reduction of
mEPSC amplitude in somatosensory cortex layer 5 pyramidal
neurons of Mef2c-Het mice (Figure 3F), suggesting that the
reduction in glutamatergic postsynaptic strength is not limited
to a specific cortical layer. Consistent with layer 2/3 pyramidal
neurons, we did not observe any differences in dendritic spine
density or dendritic spine head diameter in basal dendrites
from layer 5 pyramidal neurons (Figure S3C in Supplement 1).
There was no effect of genotype on layer 5 mEPSC frequency
(Figure 3F), but we observed a significant increase in layer 2/3
mEPSC frequency (Figure 3E) that was not explained by an
increase in dendritic spine density (Figure S3B in Supplement
1) or effects on presynaptic functions of local inputs (Figure 3C,
D) and might represent a compensatory effect of long-range
connections (11).

Mef2c-Het Mice Display Dysregulation of Cortical
Genes Associated With ASD Risk, Excitatory
Neurons, and Microglia

Using an unbiased RNA sequencing (RNA-seq) approach, we
examined gene expression from whole cortex in control and
Mef2c-Het mice (postnatal day 35–40), and we identified 490
genes that were significantly dysregulated (false discovery rate
, 0.05) (Figure 4A; Figure S4A in Supplement 1; Tables S2 and
S3 in Supplement 2). We confirmed select Mef2c-Het differ-
entially expressed genes (DEGs) that are associated with ASD
risk, microglia, and other cellular functions by quantitative
reverse transcriptase polymerase chain reaction (Figure 4D).
We also investigated the association of Mef2c-Het DEGs with
sequencing data from various brain disorders. We found that
the Mef2c-Het DEGs, particularly the downregulated genes,
were overrepresented in genes associated with ASD risk and
FMRP binding (Figure 4B, D and Table S2 in Supplement 2).
We also assessed enrichment for Mef2c-Het DEGs in genes
that were dysregulated in a meta-analysis of transcriptomic
data across neuropsychiatric disorders (45). Interestingly,
Mef2c-Het DEGs, particularly the downregulated genes, were
significantly enriched for a PsychENCODE Consortium excit-
atory neuron module of genes that are downregulated in ASD
(vs. other neuropsychiatric disorders) brains (geneM1)
(Figure 4C and Table S2 in Supplement 2). Mef2c-Het DEGs,
particularly the upregulated genes, were enriched in Psy-
chENCODE module 6, which is a microglia module of genes
upregulated in ASD but downregulated in schizophrenia and
bipolar disorder (geneM6) (Figure 4C and Table S2 in
Supplement 2). Using single-cell RNA sequencing data from
mouse cortex (46), we observed that Mef2c-Het DEGs were
strongly enriched for cortical excitatory neuron genes and
microglia genes (Figure S4B in Supplement 1 and Table S3 in
Supplement 2), further supporting the importance of MEF2C in
regulating gene expression in the two key brain populations
with high MEF2C expression. Interestingly, enrichment for
microglia genes was not detected on DEGs from Emx1-Cre
Mef2c cKO mice (Mef2c cKOEmx1-cre) (Figure S4C in
Supplement 1) (2), underscoring the specific association
492 Biological Psychiatry September 15, 2020; 88:488–499 www.sobp
between microglia and Mef2c-Het mice. To further support the
role of Mef2c in regulation of DEGs, we analyzed MEF2C
chromatin immunoprecipitation sequencing data from an in-
dependent study (47). Notably, we found enrichment ofMef2c-
Het DEGs in genes bound by MEF2C in multiple genomic re-
gions (Table S2 in Supplement 2 and Figure S4D in
Supplement 1). This result further validates the key role of
MEF2C in regulating genes associated with microglia and
synaptic etiologies.

Gene ontology analysis of Mef2c-Het DEGs revealed sig-
nificant enrichment of microglia proliferation genes, cell
metabolism genes, and genes in a microglia subpopulation in
the developing brain that is restricted to unmyelinated axon
tracts (Figure S5D in Supplement 1). As Mef2c-Het brains
showed significant dysregulation of microglial genes
(Figure 4C, D), and MEF2C is expressed in microglia in the
developing and mature brain (Figure S5A, B in Supplement 1)
(13–15), we analyzed the Mef2c-Het brain for possible upre-
gulation of the microglia cell type and neuroimmune activation
marker Iba1 (ionized calcium-binding adapter molecule 1)
(48,49). In both the cortex and the hippocampus, we observed
a significant increase in Iba1 expression (Figure 5A–C, E)
without a change in the density of microglia (Figure S5C in
Supplement 1), suggesting possible microglial activation in the
Mef2c-Het brain. This increase in Iba1 was present without an
obvious change in microglial cell morphology or microglial cell
soma volume (Figure 5A, B, D, F). In addition, in the Mef2c-Het
cortex, we observed no changes in classical and alternative
pathway inflammatory genes, including Cd68, Il6, Tnf, Il10, and
several others (Figure 5G). Many cytokines in control and
Mef2c-Het mice were undetectable by cytokine antibody array,
and there was no difference in the level of interferon-gamma
between genotypes (Figure S5E in Supplement 1). However,
we did note a significant increase in the expression of several
complement-related genes linked previously to synaptic
pruning and/or ASD risk, including C1qb, C1qc, and C4b
(Figure 4D) (16,19,50–52). Moreover, we observed significant
enrichments of upregulated Mef2c-Het DEGs in single-cell
RNA-seq gene clusters associated with embryonic-like
microglia, postnatal immature microglia, and homeostatic
microglia (Figure 5H). Taken together, these results reveal that
the reduction of MEF2C levels has significant impacts on
microglia gene expression programs.

MEF2C Contributes to Neurotypical Behaviors
Through Key Roles in Forebrain Excitatory Neurons
and Microglia

In the mouse brain, MEF2C is expressed in several cell types,
including cortical excitatory pyramidal cells, parvalbumin-
positive GABAergic inhibitory neurons, cerebellar Purkinje
cells, and microglia (2,9,13–15,53–56). As the Mef2c-Het
mouse cortex showed robust changes in both excitatory
neurons and microglia gene expression (Figure 4 and Figure S4
in Supplement 1), we generated cell type–specific conditional
Mef2c-Het mice to explore the contribution of neurons versus
microglia for the development of MCHS-like phenotypes. We
first generated mice heterozygous for Mef2c in Emx1-lineage
cells (Mef2c-cHetEmx1-cre) (42), which represents approxi-
mately 85% of forebrain excitatory neurons throughout the
.org/journal
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Figure 3. Mef2c1/2 (Mef2c-Het) mice have alterations in cortical synaptic transmission. (A) Both control and Mef2c-Het mice had normal barrel fields in the
somatosensory cortex, as reflected by VGlut2 staining. Scale bar = 500 mm. (B–F) Ex vivo recordings from organotypic slices were collected from pyramidal
neurons within the barrel cortex field. (B) No changes were observed in mIPSC amplitude or frequency in the Mef2c-Het layer 2/3 pyramidal neurons. (C)
Reduced EPSC amplitude and increased PPF were observed in layer 2/3 Mef2c-Het neurons after stimulating input neurons from neighboring layer 2/3
neurons in adjacent barrel fields (horizontal inputs). (D) No changes in evoked EPSC amplitude or PPF were observed in layer 2/3 pyramidal neurons after
stimulating input neurons from layer 4 (vertical inputs). (E, F) Mef2c-Het cortical pyramidal neurons had reduced mEPSC amplitude in layer 2/3 (E) and layer 5
(F) and increased mEPSC frequency in layer 2/3 (E). Data are reported as mean 6 SEM. Statistical significance was determined by unpaired t test. Number of
cells and animals, respectively, are reported in each graph. *p , .05, **p , .01. EPSC, excitatory postsynaptic current; mIPSC, miniature inhibitory post-
synaptic current; n.s., not significant; PPF, paired-pulse facilitation; R, recording electrode; S, stimulating electrode; WT, wild-type. Also see Figure S3 in
Supplement 1.

MEF2C Hypofunction Produces MCHS-like Behaviors

Biological Psychiatry September 15, 2020; 88:488–499 www.sobp.org/journal 493

Biological
Psychiatry

http://www.sobp.org/journal


MEF2C Hypofunction Produces MCHS-like Behaviors
Biological
Psychiatry
cortex and hippocampus. Similar to global Mef2c-Het mice,
Mef2c-cHetEmx1-cre mice displayed altered anxiety-like
behavior and male-selective increases in locomotion and re-
petitive jumping (Figure 6A–C), but they showed no changes in
social behavior or shock sensitivity (Figure 6D and Figure S6A
in Supplement 1). Interestingly, similar to global Mef2c-Het
mice (Figure 3E) and Mef2c cKOEmx1-cre mice (2), we observed
a reduction of mEPSC amplitude in layer 2/3 pyramidal neu-
rons from Mef2c-cHetEmx1-cre mice (Figure S6N in Supplement
1). These findings suggest that Emx1-lineage excitatory fore-
brain neurons contribute to the development of some, but not
all, of the behavior phenotypes observed in the global Mef2c-
Het mice. Interestingly, not all MEF2C-expressing populations
are critical for MCHS-related behaviors, as mice with MEF2C
hypofunction in parvalbumin-positive GABAergic interneurons
(Mef2c-cHetPV-cre) or in cerebellar Purkinje cells (Mef2c-
cHetPcp2-cre) showed behaviors indistinguishable from control
mice (Figure S6B–K in Supplement 1).

We next generated microglia-selective Mef2c-Het mice
(Mef2c-cHetCx3cr1-cre) (Figure S6L in Supplement 1). The con-
ditional mutant mice displayed social impairments in the 3-
chamber social interaction test (Figure 6H), similar to global
Mef2c-Het mice. In addition, Mef2c-cHetCx3cr1-cre mice
showed a significant increase in male-specific repetitive
jumping (Figure 6G), but with no discernable effects on
exploratory activity (Figure 6F), anxiety-like behavior, or shock
sensitivity (Figure 6E and Figure S6M in Supplement 1). To
investigate the possible influence of microglial MEF2C hypo-
function on neuronal function, we recorded horizontally evoked
EPSCs in layer 2/3 of the somatosensory cortex of Mef2c-
cHetCx3cr1-cre mice and control mice. Similar to global Mef2c-
Het mice, we observed a decrease in eEPSC amplitude in the
Mef2c-cHetCx3cr1-cre mice (Figure 6I). Interestingly, if we
analyze by sex, the decrease in eEPSC amplitude is driven by
males (Figure S6P, Q in Supplement 1). However, in contrast to
the global Mef2c-Het mice, no deficits in presynaptic function
were detected by paired-pulse ratio analysis in the Mef2c-
cHetCx3cr1-cre mice (Figure 6J). Taken together, our results
suggest that 1) Mef2c haploinsufficiency in early postnatal
microglia is sufficient to produce autism-related behaviors, 2)
MEF2C-deficient microglia can produce a non–cell autono-
mous influence on excitatory synaptic transmission of layer 2/3
pyramidal neurons, and 3) the majority of MCHS-like pheno-
types in the global Mef2c-Het mice can be recapitulated by
MEF2C hypofunction in both forebrain excitatory neurons and
microglia.
DISCUSSION

We report here three new MEF2C mutations in individuals with
MCHS-related symptoms, and all three mutations disrupted
MEF2C DNA binding. Interestingly, all of the known MCHS
missense or duplication mutations cluster within the highly
conserved DNA binding and dimerization domains (Figure 1A)
(57). DNA binding-deficient Mef2c-Het mice displayed
numerous behavioral phenotypes reminiscent of MCHS,
including deficits in social interaction and communication
(ultrasonic vocalizations), motor hyperactivity, repetitive
behavior, anxiety-related behavior, and reduced sensitivity
to a painful stimulus (foot-shock). In contrast to a previous
494 Biological Psychiatry September 15, 2020; 88:488–499 www.sobp
study (43), the Mef2c-Het mice did not show any clear
learning and memory deficits, which might support a unique,
primate-specific role of MEF2C (58) or reflect a background
strain interaction. The Mef2c-Het mice also possessed
input-selective, presynaptic and postsynaptic deficits in
glutamatergic excitatory synaptic transmission in the so-
matosensory cortex. Gene expression analysis of cortical
tissue from Mef2c-Het mice revealed significant enrichment
of DEGs linked to ASD risk, excitatory neurons, and
microglia, which is notable considering the enrichment of
dysregulated genes linked to cortical excitatory neurons
and microglia in brains of individuals with idiopathic ASD
(41). Conditional Mef2c-Het mice in Emx1-lineage cells,
which represent predominantly forebrain excitatory neu-
rons, reproduced several of the global Mef2c-Het behaviors
and cortical synaptic phenotypes. Consistent with the
dysregulation of microglial genes in Mef2c-Het mice, early
postnatal conditional Mef2c heterozygosity in Cx3cr1-lineage
cells, which are almost exclusively microglia in the brain
(48,49,59), produced offspring with social deficits, increased
repetitive behavior, and reduced cortical glutamatergic synaptic
transmission, suggesting a critical role for MEF2C in microglia
during neurotypical development and behavior and supporting
the growing view that microglial dysfunction in the developing
brain can underlie ASD symptoms.

Interestingly, we observed male-selective effects of Mef2c
heterozygosity on hyperactivity and/or jumping behavior in
Mef2c-Het and Mef2c-cHet mice (Figures 2E, F and 6B, C, G),
suggesting an interaction between sex-based mechanisms
and MEF2C functions. Indeed, numerous studies show that
both neuron and microglia functions can be differentially
regulated in males and females (60–63). It is also interesting to
note that Mef2c-Het DEGs linked to excitatory neurons show a
preferential downregulation, whereas Mef2c-Het DEGs linked
to microglia display a preferential upregulation. MEF2C is re-
ported to function as both a transcriptional activator and a
repressor, and there are cell type–specific signaling mecha-
nisms that regulate MEF2C activity (2,64,65).

MEF2 proteins can regulate activity-dependent gluta-
matergic synapse elimination (5–7,66), and MEF2C can func-
tion in cortical pyramidal neurons as a cell-autonomous
transcriptional repressor to regulate dendritic spine density,
synapse number, and AMPA-mediated postsynaptic strength
(2,11). cKO of both Mef2c alleles in forebrain excitatory neu-
rons produces mice with dramatic changes in cortical synapse
functions, including decreased glutamatergic synaptic trans-
mission, numerous alterations in typical mouse behaviors, and
differential gene expression (2,9,10,12). In the present study,
we detected an input-selective reduction in glutamatergic
synaptic strength in layer 2/3 pyramidal neurons from Mef2c-
Het mice as well as a reduction in presynaptic release from
local layer 2/3 inputs (Figure 3C). Interestingly, we also
observed an increase in mEPSC frequency in these neurons
(Figure 3E) that is possibly due to an increase in synaptic in-
puts from long-range corticocortical inputs that was observed
in sparse cell-autonomous Mef2c cKO in layer 2/3 cortical
neurons (11). Mef2c-Het mice showed similar changes in basal
glutamatergic synaptic transmission (i.e., reduced mEPSC
amplitude and increased mEPSC frequency) in hippocampal
dentate gyrus granule neurons, and pharmacological
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Figure 4. DEGs inMef2c1/2 (Mef2c-Het) cortex. (A) Heatmap showing DEGs inMef2c-Het cortex (postnatal day 35–40) compared with control mice. Genes
with higher expression are in red; genes with lower expression are in blue. (B)Mef2c-Het DEGs are significantly enriched in genes associated with FMRP, ASD,
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Figure 5. Mef2c1/2 (Mef2c-Het) mice exhibit increased Iba1 expression levels. (A, B) Representative images of Iba1-positive microglia in the somatosensory
cortex in control (A) and Mef2c-Het (B) mice. (C, E) Mef2c-Het mice have a right-shifted cumulative frequency distribution of mean Iba1 intensities in Iba1-
positive cells (microglia) in the somatosensory cortex (C) and hippocampus (E) compared with control mice. Gray line represents distribution of control cells,
and black line represents distribution of Mef2c-Het cells. (D, F) There is no difference in the cell soma volume of Iba1-positive cells (microglia) in the so-
matosensory cortex (D) or hippocampus (F) between control and Mef2c-Het mice. (G) Fold changes of genes associated with microglial activation in control
and Mef2c-Het mice. (H) Mef2c-Het mice have an upregulation of genes expressed in postnatal immature, homeostatic, and embryonic microglia. Unless
specified, data are reported as mean 6 SEM. Statistical significance determined by Kolmogorov-Smirnov test (C, E), unpaired 2-tailed nested t test (D, F), or
unpaired 2-tailed t test (G). #p , .1, *p , .05, ****p , .0001. Sample sizes for each genotype are denoted on bars of or above each graph unless otherwise
specified. Images (A, B) have contrast and brightness enhanced for ease of viewing. Images are modified equally for both genotypes. Downreg, down-
regulated; Embryo, embryonic; Micro, microglia; n.s., not significant; OR, odds ratio; Postnat, postnatal; Upreg, upregulated. Also see Figure S5 in Supplement 1.
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manipulation of NMDA receptors rescued numerous pheno-
types in the mutant mice (43). We also found that disruption of
a single copy of Mef2c in microglia (Mef2c-cHetCx3Cr1-cre)
(Figure 6I) or in excitatory pyramidal neurons (Mef2c-cHetEmx1-cre)
(Figure S6N, O in Supplement 1) is sufficient to reduce glu-
tamatergic strength in layer 2/3 pyramidal neurons,
suggesting that MEF2C functions in both neuronal and non-
496 Biological Psychiatry September 15, 2020; 88:488–499 www.sobp
neuronal populations to regulate glutamatergic synaptic
development and transmission.

As MCHS symptoms are reported predominantly from mac-
rodeletions andmicrodeletions that disruptMEF2C andmultiple
neighboring genes, we sought to identify possible loss-of-
function MEF2C mutations within its protein coding region to
better understand the relationship between symptoms and
.org/journal
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A B  C  D Figure 6. Cell type–selective phenotypes in
Mef2c conditional heterozygous (Mef2c-cHet) mice.
(A–D) Behaviors in Mef2c cHetEmx1 mice. (A) Mef2c
cHetEmx1 mice spent more time on the open arms of
the EPM. (B, C) Male Mef2c-cHetEmx1 mice were
hyperactive (B) and showed increased jump counts
(C). (D) Mef2c cHetEmx1 mice had normal social
interaction. (E–H) Behaviors in Mef2c cHetCx3cr1

mice. (E) Mef2c cHetCx3cr1 mice were similar to
control mice in the EPM. (F, G) Male Mef2c
cHetCx3cr1 mice had normal activity (F) but showed
increased jump counts (G) compared with control
mice. (H) Mef2c cHetCx3cr1 mice showed a lack of
preference for interacting with a novel mouse (social)
over the novel object. (I, J) Mef2c cHetCx3cr1 mouse
layer 2/3 pyramidal neurons had decreased evoked
EPSC amplitude (I) without a change in PPF (J).
Data are reported as mean 6 SEM. Statistical sig-
nificance was determined by unpaired t test (A–C,
E–G, I–J) or two-way analysis of variance (D, H). *p
, .05, **p , .01, ***p , .005. Number of animals (A–
H) or cells/animals (I–J), respectively, are reported in
each graph. EPM, elevated plus maze; EPSC,
excitatory postsynaptic current; n.s., not significant;
PPF, paired-pulse facilitation; R, recording elec-
trode; S, stimulating electrode. Also see Figure S6 in
Supplement 1.

MEF2C Hypofunction Produces MCHS-like Behaviors
Biological
Psychiatry
MEF2C. By comparing multiple new MEF2C-related mutations
from individuals with developmental delay and other MCHS-
associated symptoms, we observed that all of the missense
mutations concentrated within the MEF2C DNA binding and
dimerization domains (MADS/MEF2). All tested mutations
dramatically reducedMEF2CDNAbinding (Figure 1), suggesting
loss-of-functionmutant alleles; however, it remains possible that
the mutated MEF2C proteins could influence cell function by
titrating required MEF2C cofactors. In addition, multiple muta-
tions produced a premature stop codonor a frameshift predicted
to produce a truncated MEF2C lacking the C-terminal nuclear
localization sequence, again presumably causing a nuclear loss-
of-function or a dominant-interfering form of the protein.

Most individuals with MCHS (30–40) have robust physical
and behavioral abnormalities, and some have abnormal brain
magnetic resonance imaging scans, but no consistent effects
are observed between subjects. Reported abnormalities are
broad, including periventricular heterotopia, changes in corpus
callosal thickness (thinned or thickened), ventricular changes
(asymmetrical or enlarged), and changes in the gyral pattern of
the cerebrum (30,33,34). Mef2c-Het mice did not have obvious
changes in gross brain structures including cortical thickness
(Figure S1E in Supplement 1), highlighting potential differences
in brain development between humans and mice. Detailed
analysis of Mef2c-Het brain structures will be important to
determine if subtle morphological differences exist.

Developing andmaturemicroglia play important roles in brain
development, including synaptic phagocytosis (16,17).Microglia
also mediate synapse patterning, neurogenesis, myelino-
genesis, and cellular phagocytosis (18,20,24). MEF2C is
Biological Psychi
expressed in both human and mouse microglia, and MEF2
proteins regulate microglia development (15). Microglia-
enriched RNAs are dysregulated in human cortex from idio-
pathic ASD brains (41) and in the Mef2c-Het mouse cortex
(Figure 4 and Figure S4 in Supplement 1), and we found that
MEF2Chypofunction inmicroglia is sufficient to produce autism-
like behaviors in mice (Figure 6G, H) and alter cortical gluta-
matergic signaling (Figure 6I, J). Surprisingly, despite a strong
increase in the Mef2c-Het brain of the microglia cell type and
activation marker Iba1, (Figure 5) as well as other microglia
genes, including several complement genes (e.g., C1qb, C1qc,
andC4b), osteopontin (Spp1), and cathepsin S (Ctss) (Figure 4C,
D), we failed to detect a clear signature of basal neuro-
inflammation in Mef2c-Het brains (Figure 5G). Our findings
suggest that loss of one Mef2c allele does not produce classic
microglial activation, but rather that microglial development,
function, and/or maturation might be perturbed. Of note,Mef2c-
Het DEGs showed enrichment for a single-cell RNA-seq cluster
of genes associated with embryonic and immature postnatal
microglia, suggesting a possible delay in microglia maturation in
Mef2c-Het mice. Future studies will be important to determine
the precise roles of MEF2C in microglial development and
function andwhetherMef2c heterozygosity alters one ormore of
the numerous reported roles for microglia in brain development.

Taken together, our findings reveal that MEF2C hypo-
function throughout development produces numerous com-
plex changes in cortical synaptic transmission, gene
expression, and behaviors reminiscent of MCHS and ASD.
Specifically, the behaviors of Mef2c-Het mice are associated
with robust, input-selective deficits in cortical excitatory
atry September 15, 2020; 88:488–499 www.sobp.org/journal 497
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synaptic transmission and disruption of excitatory neuronal
and microglial gene expression. Importantly, our cell type–
selective manipulations strongly suggest that MEF2C con-
tributes to neurotypical development through critical roles in
both neuron and neuroimmune subpopulations, including
forebrain excitatory neurons (Emx1-lineage) and microglia
(CX3CR1-lineage). Understanding the role of MEF2C in these
cell populations in the body are likely to provide important new
insights into effective treatment strategies for symptoms of
MCHS.
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